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1. INTRODUCTION built in 1977; they have had negligible down-
time during this period. Originally designed for

The advantages of dielectric signal the APACHE high-altitude EMP assessment,
transmission, particularly by optical dielectric these LED systems have since been used for
waveguide, are numerous: optical fibers are TACFIRE, PATRIOT, the XM-1 tank, and several
very small and lightweight, they provide far elements of the MSEP (Multiple Systems
greater bandwidth than coaxial cables, they Evaluation Program). Sixteen 400-MHz laser
are unaffected by electromagnetic pulse (EMP) systems 3 have also been in frequent use since
and other electrical noise, they do not radiate 1977; these instruments have had few major
TEMPEST, they provide for complete electrical failures, but admittedly have needed constant
isolation (up to megavolts), and they do not ap- readjustments owing to the poor charac-
preciably perturb the free-space fields through teristics and rapid aging of the multi-mode
which they pass (a necessary feature in some lasers then available (the instrument to be
EMP and system-generated EMP instrumenta- described uses modern single-mode lasers).
tion situations). All these advantages are made The link described in HDL-TM-79-24 4 has not to
more attractive now that the price of even high- date been subjected to field use, but it has
grade optical fibers has dropped to well below operated properly in the laboratory for over a
a dollar a foot. year, and much information in regard to modal

noise was obtained in designing and building it.
The disadvantage of fiber transmission is

that a great deal of electronics and electro- The system described here, although com-
optics is needed to transform the electrical plete and functional, is actually only a step in
signal into an optical one and then, at the the process of providing the fiber-optic re-
receiving end, back into electrical form. This quirements for the SXTF.* To provide for the
paper describes a reasonable and adaptable needs of SXTF, additional factors, primarily
system which will interface with many user radiation hardening, must be taken into ac-
needs. The design of the instrument is based count; a considerable amount of this work has
on experience gained in the design and use of been accomplished, but the reporting will be
four previous instruments,1-4 three of which deferred until all work is completed, at which
have successfully withstood extensive field time a sequel to this report will be published.
use. The link which introduced the use of wide-
band fiber optics to the field of EMP studies1  The optical link provides a clean fast-rise
was used successfully for several years until signal, as shown by the waveforms of figure 1.
replaced by an improved system.2 These six These oscillograms were obtained from
120-MHz remote-controlled light-emitting transmissions through a 30-m length of single-

diode (LED) systems have been in constant fiber cable. The bandwidth available in modern

use for a variety of EMP tests since they were fibers (well over 1 GHz/km) would allow
transmission over much greater distances,

Qj. C. BWackburn, A 120-MHz Bandwidth Linear Signal with little decrease in bandwidth. Fiber at-
Transmission System Using Fiber Optics, IEEE Trans In- tenuation is of secondary importance in-
strum Meas, IM.24, 3 (September 1975). asmuch as the optical receiver has a filter of

2
J. C. Blackburn and R. Martin, A Versatile Fiber-Optic more than 10-dB attenuation at its optical in-Signal Link for EMP Testing and GeneralAppolication, Harry put; this filter can be reduced in value to corn-

Diamond Laboratories, HDL- TM-80-5 (June 1980).
3j. C. Blackburn, A Radiation-Hardened Fiber-Optic pensate for additional fiber attenuation. The

System Having a 400-MHz Bandwidth and Linear data of figure 1 were obtained with a 500-MHz
Response, IEEE Trans Instrum Meas, lW26 (March 1977). oscilloscope and a pulser with 400-ps risetime.
64-70. Positive and negative pulser outputs are equal

4
j. C Blackburn, A 300-MHz 1-km Long Fiber-Optic within less than 1 dB.

Link for Analog Signals, Harry Diamond Laboratories,
HDL-TM-79-24 (December 1979). -Satellite X-ray Test Facility.
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Figure 1. Transmitted signal waveforms (500-MHz oscilloscope: 7904 and 7A19).

2. SYSTEM DESCRIPTION Figure 4 shows the input balun coil (which
has now been replaced by a better
design-see sect. 3.1), the attenuator and

The block diagram of figure 2 summarizes calibrator board of schematic 3, and the op-
the circuitry and functions of the signal link. posite sides of the logic board and battery
Two optical paths, connected by separate pack. Signal flow is from the input SMA con-
fibers, carry both the high-frequency signals nectors through the balun into the calibrator/at-
and the low-rate digital commands. tenuator board. Here the signal is attenuated

by the selected amount (in 3-dB steps from 0 to
45 dB), and the calibration signal is inserted
through a 20-dB directional coupler. The signal

The "front panel" of the transmitter (fig. 3) (and calibration when selected) leaves the
has two SMA connectors for the input lines, a calibrator/attenuator board as a signal in the
large fiber connector for the graded-index range from 0 to approximately 10 mV and
signal fiber, a small fiber connector for the con- travels to the transmitter board; here the signal
trol fiber, and an electrical connecior for is amplified by about 30 dB and applied to the
charging the batteries. The circuit board at the laser through a passive compensating net-
front right-hand side is the laser transmitter, work. This board also contains the optical
containing the circuitry of schematic 1. The stabilizing detector and associated feedback
single-mode laser and its stabilization detector amplifier which holds the laser at a nearly con-
are affixed into a brass block near the center of stant output independent of temperature varia-
this board. The small board at the back of the tions, aging, and battery voltage fluctuations.
case is the logic, as shown in schematic 2. The The optical signal from the laser is conveyed to
batteries (adequate for several hours' use) are the large fiber connector by a single graded-
at the back left. index fiber.
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Figure 3. Fiber-optic signal transmitter (laser side).
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Schematic 1. Stabilized laser transmitter with modal noise-suppression oscillator.
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Schematic 2. Logic and command circuitry (transmitter).
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Schematic 3. Attenuator and calibration generator.

An LED is integral to the small fiber con- turns on the calibrator, causing an amplitude-
nector. This LED is used both as a detector and calibrating signal to be sent through the link,
an emitter, receiving coded optical commands and it interrogates the data received by the at-
and later transmitting light pulses to verify ex- tenuator logic; if the logic has decoded the at-
ecution of the attenuation code. Signals to and tenuation command correctly, the LED above
from this LED are decoded by the logic circuits each "in" attenuation switch will light. The cir-
of schematic 2. A single inexpensive multi- cuitry for the control functions of the
mode fiber is adequate for conveying the logic receive rlcontrol ler is shown in schematic 4.
signals between the transmitter and the
receiver/control unit. The receiver (schematic 5) consists of an

avalanche detector with its temperature-
The receive r/control le r of figure 5 has all stabilizing circuitry and a two-stage amplifie-.

the ontol withesfor he ink Th frnt-A fiber-to-fiber connection is avoided here
panel controls allow one to (1) turn the entire snemdlniewudlkl eicesdb
system on and oft, (2) operate a calibration the imperfect mode conversion in connectors;5

soure cntaied n th trnsmiter and(3) the fiber is instead fitted directly to the window
select an input attenuation level between 0 and of the detector by a modified Deutsch connec-
45 dB. All control signals are sent to the tor. It is unfortunate that one of the fastest APD
transmitter as pulse-coded light flashes carried dtcos h C 00E a nitga
by the control single fiber. fiber connector and is thus prone to excessive

modal noise.
5R. E. Epworth, Phenomenon of Modal Nioise in Fiber

The switch marked "interrogate" Systems. IEEE Topical Meeting, Fib.er Optic Communica-
energizes two functions in the transmitter: it tion (March 6-8, 1979), Washington, D.C.
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Figure 5. Optical receiver and control transmitter
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3. CIRCUITRY )e.balun, wherein one of the two input lines is in-
- verted and then summed with the other input

3. 1 Input Ba/un line in a resistive bridge, avoids both these
problems and appears to be a much more

Since the transmitter is designed to satisfactory solution. At the present time the
be used in high noise environments, it is im- transmission-line-wound type of input is being
perative that a balanced line be used for the in- used, but it is expected that the bridge-type
terconnection between the external sensor device will soon be substituted. The two types
and the transmitter; some device is needed to of baluns are discussed at length by Vander-
make the conversion from balanced to un- wall. 7

balanced circuitry. The simplest way to do this
is with a "balun transformer," as shown 3.2 Input Attenuator and Calibrator
schematically in the block diagram of figure 2.
Although the transformer shown in figure 1, Schematic 3 shows the miniature
wound as a transmission line, is commonly 0- to 45-dB attenuator and the calibrator cir-
used for this purpose, it has a number of fun- cuitry. Since the layout and assembly of the
damental limitations which should be taken in- circuits are somewhat unusual (and also
to account. First, this transformer is not critical), front and back views of the board are
matched for the common mode (noise) signal given in figures 6 and 7. The attenuator pads, in
(which is a particularly severe problem where the form of ceramic chip assemblies, are
the signal source, the sensor, is not matched) located between the relay leads with "zero
and second, because of the differing signal length" connections; this is not only compact,
propagation speeds between the two twisted but also probably provides the least pulse
leads and between both leads and ground, distortion. The relays are of the magnetic lat-
there tends to be an apparent preshoot in the ching type, thus requiring only pulsed currents
output of such a transformer.s A bridge-type

_____________ J. Vanderwall. A Very Wideband Balun Circuit Featur
6 R. E. Matick, Transmission Line Pulse ing Matched and Isolated Inputs, Harry Diamond

Transformer- Theory and Applications, IEEE Pro- Laboratories/Defense Nuclear Agency. Fiber Optics Con-
ceedings, 56, (January 1968). ference (March 1980).
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Figure 6. Calibratortlttenuator board (back view).
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Figure 7. Calibratorlatienuator board (front view).

13



and reducing battery drain. PIN diode swit- "on" or "off" by 01 and the logic of schematic
ching of the attenuation was not used because 2. Tests have shown that the amplitude out of
it was not possible to obtain enough effective R4 remains constant within ±1 dB over the
capacitance to allow for the bottom end of the temperature range of 0 to 40 C. Slight changes
circuit passband-a few kilohertz. in the value of R2 or R3 are sometimes

necessary to optimize symmetry; reference to
An additional advantage of this at- figure 6 shows that these resistors are easily

tenuator construction is that it minimizes the accessible during construction. Some aspects
surface of the signal-carrying conductor which of the circuit, such as the 430-ohm resistor be-
is exposed to Compton electrons when ir- tween clock generator and counter, are admit-
radiated another report8 has shown that this tedly unusual, but have been checked with a
was a significant problem with more massive considerable selection of logic chips from dif-
commercial attenuators. ferent companies and different lots with

satisfactorily consistent results.

A directional coupler is used to insert

the calibrator signal directly into the transmit- 3.3 Optical Signal Transmitter
ter input, at the end of the attenuator chain.
Since the attenuator resistor chips are ex- The optical signal transmitter is
tremely stable, as are the characteristics of shown in schematic 1. The circuitry can be
the input balun, the calibrating signal passes
through all elements which are likely to broken into five functions: input amplifier (Al

undergo changes in attenuation. The and A2), compensating network (R1 through R3
calibrator's signal could not be injected at the and C1, C2), the laser itself (D), the laser out-
attenuator input without great complication, put stabilizer (D2, 01 through 03, etc.), and the

since the 45-dB attenuation range is greater dither source for modal noise suppression
than system dynamic range-a calibrator (G1).
would be necessary whose output changed
with attenuation setting. Amplifiers Al and A2 are hybrid units

made by Avantek, Inc. Each has a gain of
The calibrating waveform is supplied about 11 dB and an upper frequency response

by a Johnson counter (IC3 of schematic 3) down only about 1 dB at 1 GHz; the low-end
driven by an oscillator formed by the cascaded response is determined by the coupling
stages of IC2. The outputs of the Johnson capacitors, These amplifiers are mounted in
counter are summed by R2, R3, R4; attenuated the same type of microstrip construction
by R5, R6; and applied directly into the shown in figure 3. With the two-stage amplifier
transmitter's input. The waveform at the junc- shown, input signal levels on the order of a
tion of R2, R3 is of the sequence 0, 1U, 2U, 1U, milivolt are useable with the transmitter; if
0, etc., where all steps are of equal width, smaller signals need to be observed, an addi-
depending on the oscillator period, and where tional 1062 stage can be added ahead of the
U represents an arbitrary unit signal amplitude, present one.
When coupled through by C2 this waveform
averages around the 1U value and becomes The compensating network between
the desired -1 U, 0, +1 U sequence (as shown A2 and the laser corrects for both the
in fig. 8). IC2 and IC3 are supplied with capacitance and inductance of the laser and a
regulated voltage by 1 and are switched small amount of pulse droop in the attenuators.

It would be desirable to replace C1 and 02 with8J. C. Blackburn and A. Brom borsky, Design and Con - h s c ly v r m l v r a l a a i o s t

struction of a Radiation Hardened Analog Fiber Optic Data physically very small variable capacitors to
Link, IEEE Conference on Nuclear and Space Radiation Ef- allow for fine compensation, although at pres-
fects (July 1977). ent fixed units are used satisfactorily.
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Figure 8. Calibrator waveform as observed at junction of R2 and R3. schematic 3.

The design of the laser output for the -5 V supply; Ois biased on only when
stabilizer avoids the use of operational the +15 V supply is energized.
amplifiers. A later model of this transmitter,
modified but little, will be used in an x-ray en- Oscillator Gi provides a very high-
vionment; it was assumed that excess stages frequency (1.5 GHz) current drive component
and excess open-loop gain would make the cir- to the laser, along with the current drives ap-
cuit more susceptible to transient radiation ef- plied by A2 and 03. This high-frequency cur-
fects on electronics (TREE) and system- rent drive, the level of which is adjusted by C4,
generated EMP (SCEMP) problems. has been found beneficial in reducing modal

noiseg-this will be discussed in section 3.6 of
this paper.

PIN diode 02 directly views the
monitor output of the laser diode (see fig. 3). At 3.4 Optical Signal Receiver
the normal operating level of the laser (around
0.6 mW output from the fiber), D2 draws about Schematic 5 shows the optical
100 jAA through R8. This current is independent receiver (which is located in the center of the
of the supply voltage, since the diode is an ex- receive rlcontrolle r of fig. 5). Avalanche detec-
cellent current source. Z1 fixes the voltage at tor D1 is reverse-biased by the bias-control cir-
the base of 02, and the drop across R8 is com- cuitry of V0,10C2, 01, etc., and its output is ap-
pared with this voltage in 02, with the output plied to Al and A2, which are hybrid circuits of
further amplified in 03 and applied to the laser the same types as Al and A2 of the transmit-
through R5, R4, and Li. D3 is to prevent ex. ter. The output of the amplifier chain is coupled
cessive reverse bias being applied to the laser to the electrical signal output.
when A2 is initially powered up. R4 provides a 9J Vanderwatt and J. C. Blackburn, Suppression of
laser current monitor point, as does R7 for Some Artifacts of Modal Noise in Fiber-Optic Systems, Op-
detector current. 01 serves as an on-off switch tics baetters, 4, 9 (September 1979).
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The purpose of the bias-control cir- lights and remains lighted for several hundred
cuit is to supply to D1 a precisely controlled milliseconds while the interval of IC9, section
reverse bias of about 250 V, which is made to 1, runs out; when IC9, 01 goes high, IC7 begins
increase with temperature to compensate for to oscillate, applying a 500-Hz square wave to
the decrease in DI's gain (for a fixed bias) with D5 via 05 and 06; this on-off-on flashing of D5
temperature. A reference current is applied to continues until counter IC8 counts a number of
IC2 by 101, where it is summed with a current flashes equal to the number preset by the at-
through R8 and THI (dependent on tenuation command switchesSWl-SW4: when
temperature) and a current through R9 (depen- the preset number has been counted, the bor-
dent on detector bias voltage). The thermistor row line of IC8 goes low, stopping the square
TH1 has a negative coefficient of resistance wave and the flashing (and leaving D5 lighted).
such that it will cause the detector voltage to
rise for an increase in temperature. The action Meanwhile, at the transmitter end,
of Z1 is to decrease the emitter-collector D1, through the optical fiber connection, has
voltage and dissipation of 01. 02 and Q3 observed the light emitted by D5. Initially, the
crowbar the detector voltage to 100 V if the output of 1 goes low, the low is passed
+15 V supply fails; without this circuit, if the through D3 to IC3f, and the output of IC3f
+15 V supply should fail, IC2 would not be able momentarily pulses the magnetic latching
to forward-bias Q1, and the detector voltage relay to cause transmitter power to turn on.
would rise to a maximum, causing detector When the output of I01 begins to pulse (in
failure, response to the flashing of D5) the long time

constant of C5 and R9 prevents the pulses
Since the signal levels at D1, Al, and from being applied to IC3f; however, the pulse

A2 are small, liberal use is made of feed- count is applied directly to counter IC2. Finally,
through capacitors to keep noise out of the the time constant of R10 and C6 expires, the
receiver enclosure. It is also suggested that a output of IC3d goes high, the counter (IC2) is
Pi-type line filter be used where the ac power disabled, and the strobe signal enters the
line enters the receiver/controller enclosure. A states at the output of IC2 into the magnetic
line filter, along with the feedthrough filters into latching attenuator relays of schematic 3. At
the receiver enclosure, should avoid noise pro- this point, the transmitter has been powered up
blems. and the attenuation command has been loaded

into the latching relays.
3.5 Digital Control System

If one now wishes to operate the
The optical commands which drive calibrator and/or check that the proper at-

the transmitter's electronics are generated by tenuation command has been received, the in-
the controller, which is the right-hand portion terrogate switch (SW6) is closed, which causes
of the receiver/controller of figure 5. The com- IC! 1 to oscillate at approximately 1 Hz. When
mands are sent as a pulse-code-modulated I01V Q2 goes low, Q6 is turned on, allowing D5
light beam coupled by optical fiber to the to light; when 02 goes high, the drive is re-
remotely located transmitter. An unusual moved from D5, and IC9 02 momentarily ap-
feature is that at both controller and transmit- plies a clear to counter IC6, setting it to zero
ter an LED is used both as an emitter and a and thus readying it to count pulses. This se-
detector, with time multiplexing to allow a quence continues as long as interrogate is
single fiber to carry signals in both directions, turned on.

When the system is switched "on" At the transmitter end, when the out-
by SW5, the sequence is as follows (with put of 101 goes high (in response to the ex-
reference to schematics 2 and 4): LED D5 tinguishing of D5) D2 charges C3 through R6,
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ultimately causing the output of IC3a to go low; major problem only after single-mode lasers
this causes (1) the calibrator to turn "on" (via came into frequent use, roughly in the last year
01 of schematic 3) and (2) the output of IC3b to or so. The desirable properties of these
go high momentarily while C4 charges. The lasers-stability, linearity, etc.-are accom-
high out of IC3b causes counter IC4 to load the panied by a seemingly innocuous (or even
output of IC2. When C4 is charged, IC3b goes desirable) property-high source coherence, a
low, the counter is enabled, and the carry out- result of the narrow spectral width. As Epworth
put of IC4 will go high (unless the output of IC2 points out,5 and as we have verified, this
is zero). When the carry output goes high, coherence exacerbates the speckle-pattern ef-
diode D5 ceases to conduct, and IC3c begins fects which give rise to modal noise. Multi-
to oscillate at about 500 Hz: its output is ap- mode lasers or LED's have a wider bandwidth,
plied to IC4 (which counts the pulses) and 04 reducing or eliminating modal noise, but these
(which flashes LED D1). When the number of devices do not have the single-mode laser's
pulses equals the preset in IC4, the carry out- high output, linearity under modulation, and
put goes low, and current through D5 stops capability for high modulation rate. It must be
oscillator IC3c and the flashing of D1. 03, a understood that modal noise is not a problem
diode-connected transistor, forms a low- with lasers, but a problem with fiber and fiber
leakage diode, ensuring that the leakage joints that becomes readily apparent when
through 04, when it is turned off, does not combined with a coherent source.
reach D1 and interfere with its function as a
detector. Given the current state of under-

standing of modal noise and the charac-
At the controller, D5 has functioned teristics of single-mode lasers it seems

as a detector and observed the pulses emitted desirable for the experimenter to obtain and
by D1, applying the count to IC6. The count of test, under actual use conditions, specimens
IC6 is displayed on the LED's D6 to D9. If the of what appear (on the basis of manufacturer's
attenuation command has been properly data sheets) to be desirable lasers, finally pick-
received, the attenuation indicated by D6 to D9 ing the best performer. Since no standards ex-
will agree with that selected by the ist for specifying or measuring modal noise,
switches SWl to SW4. and since the most minute details of the laser's

wavelength and mode structure variation are
When the system is switched "off" likely of critical importance, the manu-

D5 is extinguished, the output of 101 goes high, facturer's specifications often only hint at the
the time constant of C5 and R9 expires, and results to be obtained. It should be noted also
the output of IC3e goes low; this does two that noise, including modal noise, is often of
things: (1) it pulses the power relay "off" and less importance in digital signalling than in
(2) it strobes all the attenuator relays "in." analog; designs which are satisfactory for one
Having maximum attenuation inserted when situation may be most unsatisfactory for the
the system is "off" helps to avoid damage other.
from transient signals.

We have also experimentally deter-
3.6 Modal Noise Control mined a number of precautions in regard to the

means of making fiber-to-fiber connections. A
Modal noise, previously cited,5,9 is a first rule is to minimize the number of such

new subject of investigation, having become a connections; a second point is that in our ex-
T perience the Deutsch Company optical con-5R. E. Epworth, Phenomenon of Modal Noise in Fiber nectors are more satisfactory than butt-type

Systems, IEEE Topical Meeting, Fiber Optic Communica- connectors. In a private communication, M.
tion (March 6-8, 1979), Washington, D.C.

9j. Vanderwall and J. C. Blackburn, Suppression of Holtzman of Deutsch showed that their con-
Some Artifacts of Modal Noise in Fiber-Optic Systems, Op- nector design was conducive to maintaining
tics Letters, 4, 9 (September 1979). the mode structure between the joined fibers;
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since mode-selective loss gives rise to modal As usual, however, some avenues to im-
noise, this is very important. Interestingly, provement became obvious. It was clear that it
Holtzman revealed this information before (as would be preferable to use a single fiber-optic
best I know) anyone had identified the modal cable containing two fibers (such as Seicor-
noise problem. type 212) to carry both signal and control func-

tions. The link was subsequently changed to
Based on our experiments, we find use such cable; this change not only afforded

that a particularly important place to avoid the convenience of a single-cable intercon
butt-type connectors is at the receiving PIN or nect, it also eliminated the cable and ccnnec-
APD detector. It is our practice to bring the end tor which had broken during the field test. We
of the fiber to the window of a nonpigtailed also found that a good portion of the ripple in
detector, avoiding altogether a fiber-fiber inter- the calibration signal waveform is contributed
face. Given the small numerical aperture of the by the directional coupler used for injecting the
fibers which are capable of high-frequency calibration signal. This ripple, although low by
transmission, the light in the fiber's exit cone rf standards, is sufficient to be bothersome in
will fall within the senstitive area of most detec- measuring calibration peak-to-peak height. A
tors-this is essential, since if some of the resistive network can be used to inject the
modes literally miss the detector, one certainly signal instead of the directional coupler.
has a mode-selective loss in operation.

Although single-mode fibers might
appear to be a panacea for modal noise (you 5. FUTURE PLANS
cannot have interference between modes if
there is only one mode), one must be careful of Future uses dictate the incorporation of
this approach also-the single-mode tends to multiple balanced signal inputs with remote
split into two modes when the fiber is sub- selection via the control fiber-we intend to
jected to the vicissitudes of normai experimen- use a straightforward extension of the logic to
tal use (bends, pressure, etc.). If two modes do this. We have also considered that the at-
are developed, extreme modal noise may tenuation verification (in the interrogate mode)
result because of the possibility of total determines only that the commands are cor-
destructive interference between the two rect at the output of IC2 and not that the relays
modes. have thrown. It is rather unlikely that the relays

would fail to obey the logic states at IC2, but if
deemed necessary the actual relay state can

4. FIELD-TEST RESULTS be monitored by a small current applied
through a resistor to the relay tie-bus (indicated

The signal link described here was initially by • on RY4 of schematic 3). There would be a
used in the field for current-injection tests of trade-off for this in that the stray capacitance
the Defense Satellite Communications System of the resistors would produce a modest pulse
(DSCS) II Communications Satellite, where it distortion which might not be completely
performed well-the only failures or difficulties removed by compensation.
were the result of the control fiber cable con-
nector being broken, a readily repairable situ- As mentioned at the outset, we are con-
ation. Noise and distortion were low enough tinuing to test both the electronics of the
that the hard-wire (coaxial cable coupled) and transmitter and the optical fibers for their per-
fiber-optic-coupled oscillograms were not formance in ionizing radiation. By selecting the
readily distinguishable from one another on the most inherently hard fibers and components,
basis of noise or distortion in the optical link. circuit design, and finally brute force shielding
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with high-Z materials, we can meet the re- nectors, mode-hopping in lasers, tailing in
quirements of the program. We also will con- detectors (etc.) become important, as they are
tinue to evaluate lasers, connectors, and in wideband analog laser systems, there is no
detectors in our laboratory. It is our continuing substitute for careful in-system trials of
experience that published device specifica- devices. As the technology advances, the im-
tions are little more than a starting point to portant parameters need to be identified and
make an initial selection as to what devices ap- isolated and uniform standards established. At
pear most or least promising. When such present this has not been accomplished and
parameters as modal noise production in con- appears to be a goal of immediate interest.
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